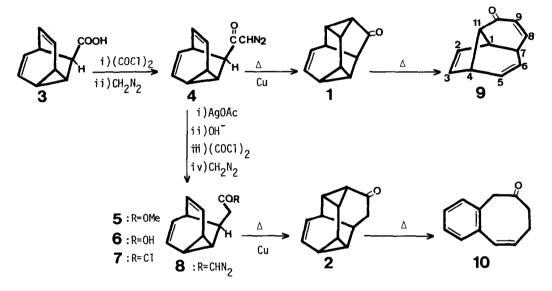

Tetrahedron Letters No. 52, pp 4623 - 4626, 1977. Pergamon Press. Printed in Great Britain.

PYROLYSES OF THE $C_{11}H_{10}O$ and $C_{12}H_{12}O$ ketones¹ Two types of thermal 6- π electron rearrangements of the pentacyclic bis-homotropilidenes

Tsutomu Miyashi, Heizan Kawamoto and Toshio Mukai^{*} Department of Chemistry, Faculty of Science, Tohoku University, Sendai, 980 Japan

(Received in Japan 22 October 1977; received in UK for publication 3 November 1977)

In general, cyclic compounds containing the cyclopropyl-vinylcyclopropane ring system, upon thermolysis, undergo an internal $[2\pi + 2\sigma + 2\sigma]$ cycloaddition reaction,² regardless of whether the second cyclopropane ring conjugates with the double bond or not. The pyrolysis of one of bis-homotropilidenes, pentacyclo[5.5.0.0²,¹².0⁶,⁸.0^{3,9}]dodeca-4,10-diene (<u>A</u>, X = -C=C-)^{2b} is unexceptional and undergoes the homo Cope rearrangement³ of the cyclopropyl-vinylcyclopropane system to afford the tetracyclic hydrocarbon, tetracyclo[5.5.0²,⁴.0^{3,10}]dodeca-5,8,11-triene (<u>B</u>, X = -C=C-) even though the retro-Diels-Alder reaction would be expected to give the tricyclic hydrocarbon, tricyclo[5.5.0.0²,¹²]dodeca-3,5,8,10-tetraene (<u>C</u>, X = -C=C-) which is of interest as a potential precursor of tricyclo[5.5.0.0^{4,10}]dodeca-2,5,8,11-teraene.⁴ This recent communication^{2b} prompts us to report our results on the investigation of pyrolyses of the skeletally related bis-homotropilidenes (<u>1</u> and <u>2</u>).

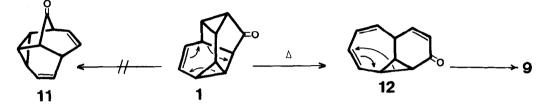

We wish to report here a marked difference in thermal behavior between these two compounds that the $C_{11}H_{10}O$ ketone (<u>1</u>) containing the cyclopentanone ring undergoes the retro-Diels-Alder reaction such as <u>A</u> \rightarrow <u>C</u>, while the cyclohexanone homologue, the $C_{12}H_{12}O$ ketone (<u>2</u>) behaves differently and instead, undergoes the homo Cope rearrangement such as <u>A</u> \rightarrow <u>B</u>.

Both bis-homotropilidenes (<u>1</u> and <u>2</u>) were prepared starting from the readily accessible carboxylic acid (<u>3</u>)⁵ in good yields. Chlorination with oxalyl chloride followed by diazomethylation afforded the diazoketone (<u>4</u>)⁷ in 83% yield from (<u>3</u>). Copper-catalyzed decomposition of (<u>4</u>) in refluxing tetrahydrofurane yielded the novel $C_{11}H_{10}O$ ketone, tetracyclo-[5.4.0. $O^{2,11}$. $O^{6,8}$]undeca-3-en-9-one (<u>1</u>), mp 68°C, in 73% yield. The structure of (<u>1</u>) was

unequivocally determined by the spectral properties $[v_{max}^{KBr}, 1725 \text{ cm}^{-1}; \text{m/e}, 158 (M^+), 130, 129 (100%), 115, 78; NMR (<math>\delta$ in CDCl₃), 6.30 (ddd, 10.0, 6.8, 1.0 Hz, 1H), 6.04 (dd, 10.0, 6.8 Hz, 1H), 3.0 (m, 1H), 1.90 ~ 2.20 (m, 4H), 1.55 ~ 1.80 (m, 3H)].

1H), 3.0 (m, 1H), 1.90 ~ 2.20 (m, 4H), 1.55 ~ 1.80 (m, 3H)]. Similarly, the $C_{12}H_{12}$ 0 ketone, tetracyclo[5.5.0^{2,11}.0^{6,8}]dodeca-3-en-9-one (2)(mp 115°C)^{2b} was prepared from the diazoketone (8)⁸ which was, however, derived from (4) by the different way from the previous one^{2b} as shown in Scheme I.

(Scheme I)



The $C_{11}H_{10}$ 0 ketone (<u>1</u>) was relatively stable to heating around at 300°C, but the isomeric trienone, tricyclo[5.4.0.0⁴,¹¹]undeca-2,5,8-trien-10-one (<u>9</u>) was obtained as the sole product in 84% yield upon thermolysis at 400°C in a flow system. The structure of (<u>9</u>) was discerned from its spectral data [ν_{max}^{CHC1} 3, 1680 cm⁻¹; λ_{max}^{Et0H} , 214.5 nm (log ε = 3.90); m/e, 158 (M⁺), 130, 129 (100%), 115, 78], and definitively, spin decoupling of individual resonance provided the complete assignment of the nmr spectrum (Table I). The fact that neither a homo Cope rearrangement product such as (<u>11</u>) nor its secondary pyrolysis product was found indicates that

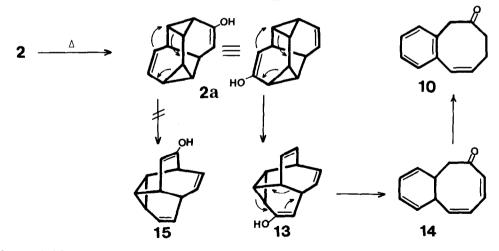

Assignment	δ (ppm)	Appearance (Hz)	Assignment	δ (ppm)	Appearance (Hz)
C1-H C2-H C3-H C4-H C5-H C5-H	2.70-3.15 5.66 6.58 2.70-3.15 6.13 5.40	<pre>multiplet ddd(d=6.0,3.0,1.0) dd(J=6.0,3.0) multiplet ddd(J=9.0,6.0,1.0) dddd(J=9.0,6.0,1.6,1.0)</pre>	С7-Н С8-Н С9-Н С9-Н С1-Н	2.70-3.15 6.80 6.06 2.70-3.15	multiplet ddd(J=10.0, 5.0, 1.0) dd(J=10.0,0.8) multiplet

Table I. NMR Spectrum of (9)

the pathway to give $(\underline{9})$ is exclusive in the pyrolysis of $(\underline{1})$. Thus, the formation of $(\underline{9})$ can be rationalyzed by the initial retro-Diels-Alder reaction to give tricyclo[5.4.0.0^{2,11}]undeca-3,5,8-trien-10-one ($\underline{12}$) followed by the 1,3-sigmatropic rearrangement of ($\underline{12}$) to ($\underline{9}$). Although the trienone ($\underline{12}$) was not isolated, thermolabile character of ($\underline{12}$) would be feasible, considering thermal behavior of its isomeric ketone, tricyclo[5.4.0.0^{2,11}]undeca-3,5,9-trien-8-one.⁹ The rearrangement of ($\underline{12}$) to ($\underline{9}$) also provides sharp contrast to the low energy thermal process observed in the 8-carboethoxyl derivative of ($\underline{12}$).¹⁰

On the contrary to the $C_{11}H_{10}^{0}$ ketone (<u>1</u>), the homologated ketone (<u>2</u>) exhibited the different type of the rearrangement upon thermolysis at 400°C to afford benzocyclooctenone (<u>10</u>) in 80% yield [v_{max}^{neat} , 1705 cm⁻¹; λ_{max}^{EtOH} , 243 nm (log ε = 2.92); m/e, 172 (M⁺), 144, 129 (100%); NMR (δ in CDCl₃), 6.64 (d, J=12.0 Hz, 1H), 6.00 (m, 1H), 3.80 (s, 2H), 2.42 (m, 4H), 7.20 (m, 4H)]. The exclusive formation of (<u>10</u>) from (<u>2</u>) suggests that the homo Cope rearrangement observed in the pyrolysis of (<u>A</u>, X = -C=C-)^{2b} takes place regiospecifically in the enol form (<u>2a</u>). The subsequent retro-Diels-Alder reaction^{2b} of (<u>13</u>) to (<u>14</u>) followed by the succesive 1,5-hydrogen shifts result in the formation of (<u>10</u>).

A remarkable difference in thermal behavior observed in the pyrolyses of bis-homotropilidenes (<u>1</u> and <u>2</u>) could be ascribed to the difference of the ring strain imposed. Thus, the retro-Diels-Alder reaction involving cleavage of the inner α,β -bond of the cyclopentanone ring becomes operatative in the more strained $C_{11}H_{10}O$ ketones. The rearrangements of the $C_{11}H_{10}O$ ketones (<u>1</u> and <u>12</u>) are also intriguing from a stand points of the energy surface of the increasing number of thermolabile $C_{11}H_{10}O$.

References and Notes

- Organic Thermal Reactions XXXIX, Part XXXVIII, T. Miyashi, A. Hazato, and T. Mukai, J. Am. Chem. Soc., <u>99</u>, (1977).
- 2) a) The typical example is the retro-Diels-Alder reaction of bis-homobenzenes.
 H. M. Whitlock, Jr., and P. F. Schatz, <u>J. Am. Chem. Soc.</u>, <u>93</u>, 3837 (1971). See also Ref. 2b, references cited therein.
 b) E. Vedejs and R. A. Shepherd, J. Org. Chem., <u>41</u>, 742 (1976).
- 3) In order to distinguish the rearrangement of the cyclopropyl-vinylcyclopropane system (<u>16</u>) in which the second cyclopropane ring does not conjugate with the double bond from the retro-Diels-Alder reaction of the bis-homobenzene system (<u>17</u>), the rearrangement of (<u>16</u>) is termed the homo Cope rearrangement in this report since that is rather resemble the Cope rearrangement of the cis-divinylcyclopropane system. (<u>16</u>)
- R. B. Woodward and R. Hoffman, "The Consrvation of Orbital Symmetry", Verlag Chemie GmbH, Weinheim/Berg str., 1970, p 106.
- 5) The carboxylic acid (3)(mp 109°C) was prepared by oxidation (Ag₂0) of 9-aldehydetricyclo-[$3.3.1.0^{2,8}$]nona-3,6-diene⁶ in 92% yield.
- W. von E. Doering, B. M. Ferrier, E. T. Fossel, J. H. Hartenstein, M. Jones, Jr., G. Klump, R. M. Rubin and M. Saunders, <u>Tetrahedron</u>, <u>23</u>, 3943 (1967).
- 7) The diazoketone $(\underline{4})$ was prepared by chlorination with oxalyl chloride (88.5%) followed by diazomethylation (93.7%).
- 8) The diazoketone (<u>8</u>) was prepared by following procedures. Silver acetate-catalyzed Wolff rearrangement of (<u>4</u>) in methanol gave (<u>5</u>) in 71.8%. Hydrolysis of (<u>5</u>) by sodium hydroxide in aqueous methanol gave (<u>6</u>) in quantitative yield. Chlorination of (<u>6</u>) with oxalyl chloride (67%) followed by diazomethylation (90%) gave (<u>8</u>). Copper-catalyzed decomposition of (<u>8</u>) gave (<u>2</u>) in 60% yield [v^{KBr}_{max}, 1670 cm⁻¹; m/e, 172 (M⁺, 38%), 144, 129 (100%), 115, 94; NMR (δ in CDCl₃), 2.69 (dd, 18.0, 3.0 Hz, 1H), 2.60 (dd, 18.0, 4.0 Hz, 1H), 2.00 (broad s, 1H), 1.20-1.90 (m, 6H), 6.00-6.15 (m, 2H)].
- 9) R. Aumann, Angew. Chem. Int. Ed. Engl., 15, 376 (1976).
- 10) E. Vedejs and W. R. Wilber, Tetrahedron Lett., 2679 (1975).
- M. J. Goldstein, R. C. Krauss and S. -H. Dai, <u>J. Am. Chem. Soc.</u>, <u>94</u>, 680 (1972);
 J. T. Groves and B. S. Packard, <u>ibid.</u>, <u>94</u>, 3252 (1972); M. J. Goldstein and S. -H. Dai, <u>ibid.</u>, <u>95</u>, 933 (1973); M. J. Goldstein and S. A. Kline, <u>ibid.</u>, <u>95</u>, 935 (1973), <u>Tetrahedron Lett.</u>, 1089 (1973); J. T. Groves and K. W. Ma, <u>Tetrahedron Lett.</u>, 5225 (1973);
 M. J. Goldstein and S. -H. Dai, <u>ibid.</u>, 535 (1974); J. T. Groves and C. A. Bernhardt, <u>J. Org. Chem.</u>, <u>40</u>, 2806 (1975); J. T. Groves and K. W. Ma , <u>J. Am. Chem. Soc.</u>, <u>97</u>, 4434 (1975); R. Aumann, <u>Angew. Chem. Int. Ed. Engl.</u>, <u>15</u>, 376 (1976); R. Aumann, <u>Chem. Ber.</u>, <u>110</u>, 1432 (1977).